- 9.1 个体与集成
9.1 个体与集成
集成学习的基本结构为:先产生一组个体学习器,再使用某种策略将它们结合在一起。集成模型如下图所示:
在上图的集成模型中,若个体学习器都属于同一类别,例如都是决策树或都是神经网络,则称该集成为同质的(homogeneous);若个体学习器包含多种类型的学习算法,例如既有决策树又有神经网络,则称该集成为异质的(heterogenous)。
同质集成:个体学习器称为“基学习器”(base learner),对应的学习算法为“基学习算法”(base learning algorithm)。异质集成:个体学习器称为“组件学习器”(component learner)或直称为“个体学习器”。
上面我们已经提到要让集成起来的泛化性能比单个学习器都要好,虽说团结力量大但也有木桶短板理论调皮捣蛋,那如何做到呢?这就引出了集成学习的两个重要概念:准确性和多样性(diversity)。准确性指的是个体学习器不能太差,要有一定的准确度;多样性则是个体学习器之间的输出要具有差异性。通过下面的这三个例子可以很容易看出这一点,准确度较高,差异度也较高,可以较好地提升集成性能。
现在考虑二分类的简单情形,假设基分类器之间相互独立(能提供较高的差异度),且错误率相等为 ε,则可以将集成器的预测看做一个伯努利实验,易知当所有基分类器中不足一半预测正确的情况下,集成器预测错误,所以集成器的错误率可以计算为:
此时,集成器错误率随着基分类器的个数的增加呈指数下降,但前提是基分类器之间相互独立,在实际情形中显然是不可能的,假设训练有A和B两个分类器,对于某个测试样本,显然满足:P(A=1 | B=1)> P(A=1),因为A和B为了解决相同的问题而训练,因此在预测新样本时存在着很大的联系。因此,个体学习器的“准确性”和“差异性”本身就是一对矛盾的变量,准确性高意味着牺牲多样性,所以产生“好而不同”的个体学习器正是集成学习研究的核心。现阶段有三种主流的集成学习方法:Boosting、Bagging以及随机森林(Random Forest),接下来将进行逐一介绍。